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1. Project Summary 

 

Objective The objective of this project is to mitigate or eliminate threats of kernel rootkits 

against production computer systems. As one of the most elusive types of malware, kernel 

rootkits are designed to stealthily subvert the operating system kernel – the software root of trust 

of a computer system. With their omnipotence inside the compromised systems, kernel rootkits 

have increasingly been used to assist attackers in a variety of malicious activities, such as 

opening system backdoors, stealing private data, escalating attacker process privileges, and 

tampering with anti-malware facilities. Unfortunately, the state-of-the-art in kernel rootkit 

defense is mainly reactive and is in a fundamentally disadvantageous position relative to the 

kernel attacks. The three main research tasks proposed in this project aim to make a difference 

by grabbing the “upper hand” in the arms race against kernel rootkits. 

 

Approach The cornerstone of this research is the development of an integrated, virtualization-

based architecture for automatic indication, avoidance and profiling of kernel rootkit attacks 

while maintaining non-stop production system operation. Under this architecture, a production 

system (running as a virtual machine or VM) executes at full speed under normal circumstances, 

while the proposed architecture watches out for the first sign of a kernel rootkit attack and 

indicates the attack right before it strikes. In response, the production VM “splits” into two 

copies: one is the same production VM running uninterrupted and without the negative impact of 

the rootkit; while the other one is a live profiling VM which will generate a multi-aspect profile 

of the kernel rootkit. Moreover, the profile will guide the generation of a variety of kernel attack 

defense techniques, which will be applied back to the production system and shield it from future 

rootkit attacks. 
 

 

2. Accomplishments 

 

The major accomplishments of this project are highlighted as follows. 

 

 This research has resulted in a number of new scientific concepts and results in kernel 

malware detection, prevention, and profiling (details in Section 3). The research efforts 

have helped establish kernel malware defense as a major area in computer systems 

security research. The techniques produced by this research, such as kernel memory 

shadowing, kernel data mapping and access profiling, process implanting, and process 

out-grafting are frequently cited by subsequent literatures. 

 

 In addition to scientific concepts and results, this research has generated a number of 

open-source software prototypes (e.g., NICKLE-KVM, DataGene, Timescope, Process 

Implanting, Process Out-grafting, and FACE-CHANGE). They are available for 

distribution to researchers and developers. In particular, NICKLE-KVM and DataGene 

were adopted as the basis for developing a kernel-level intrusion detection system, which 

was part of an Army CERDEC-funded project “Host-Centric Intrusion Detection and 

Reaction” (Contract W15P7T-11-C-A021, 06/2011-05/2013, Main performer: Applied 

Communication Sciences). Process Implanting and FACE-CHANGE have been 



transferred (as potential code base) to Intelligent Automation, Inc. for an upcoming 

AFRL-funded project “Versatile Live Patching System”.    

 

 This research has involved a number of graduate students, who obtained valuable 

scientific training and hands-on experience in kernel malware defense and virtualization 

technology. In particular, five students have earned their PhD degrees and started 

pursuing their research careers in academia and industry: Dr. Dannie Stanley (PhD 2013, 

assistant professor at Taylor University), Dr. Zhi Wang (PhD 2012, assistant professor at 

Florida State University), Dr. Deepa  Srinivasan (PhD 2012, senior software engineer at 

Microsoft), Dr. Zhiqiang Lin (PhD 2011, assistant professor at University of Texas at 

Dallas and 2014 AFOSR Young Investigator), and Dr. Junghwan Rhee (PhD 2011, 

researcher at NEC Labs America). 

 

 

3. Research Activities and New Findings 

 

The following subsections will present more technical details about the major research activities 

and their scientific findings in this project. Many of these results have been published in peer-

reviewed conferences and journal. A complete listing of publications can be found in Section 4. 

 

3.1 Kernel Rootkit Prevention with Performance Optimization 

The first task of this research is to explore advanced kernel rootkit prevention/avoidance 

techniques that are more efficient and effective than the state of the art, including the PIs’ earlier 

work called NICKLE. Solutions like NICKLE have been created to prevent kernel rootkits by 

relocating the vulnerable physical system to a guest VM and enforcing a W⊕KX memory access 

control policy from the host virtual machine monitor (VMM or hypervisor). The W⊕KX 

memory access control policy guarantees that no region of guest memory is both writable and 

kernel-executable. 

 

In this research, it is observed that the guest system must have a way to bypass the W⊕KX 

restriction to load valid kernel code, such as kernel drivers, into memory. To distinguish between 

valid kernel code and malicious kernel rootkit code, NICKLE and others use cryptographic 

hashes for verification. Offline, a cryptographic hash is calculated for each piece of valid code 

that may get loaded into the guest kernel. Online, the VMM intercepts each guest attempt to load 

new kernel code and calculates a hash for the code. If the online hash matches an offline hash, 

the load is allowed. 

 

It is also observed that some modern kernels however, are “self-patching;” they may patch kernel 

code at run-time. If the patch is applied prior to hash verification, then the hashes will not match. 

If the patch is applied after hash verification, then the memory will be read-only, due to W⊕KX 

enforcement, and the patch will fail. Such run-time patching may occur for a variety of reason 

including: CPU optimizations, multiprocessor compatibility adjustments, and advanced 

debugging. The previous hash verification procedure (including that introduced by NICKLE) 

cannot handle such modifications. 

 



 
Figure 1: Runtime (left) and load time (right) verification of self-patching guest kernel code 

 

To address these challenges, efforts in this project have resulted in a new system that verifies the 

integrity of each instruction introduced by a self-patching kernel. Each instruction is verified by 

comparing it to a whitelist of valid instruction patches (Figure 1). The whitelist is generated 

ahead of time while the guest is offline. When online, certain predetermined guest events like 

write-faults and code loading, will trigger a trap into the host and give the system the opportunity 

to verify new instructions. 

 

The new system is guest-transparent; no modifications to the guest operating system are required. 

However, the whitelist construction is dependent on the guest kernel. Each guest kernel may 

patch itself in different ways. Correspondingly, the whitelist creation procedure requires deep 

knowledge of the guest kernel to collect all of the possible valid patches. It has been discovered 

that the Linux kernel has at least five different facilities that influence code modification, with 

details presented in [1].  

 

 

3.2 Kernel Memory Mapping for Rootkit Profiling  
The second task of this research is to develop advanced methods and techniques for profiling the 

behaviors of kernel rootkits. Experience in this research indicates that a major challenge in 

kernel rootkit profiling is to accurately and completely identify kernel objects that are 

dynamically created and destructed in kernel memory. In fact, dynamic kernel memory has been 

a popular target of recent kernel malware due to the difficulty of determining the status of 

volatile dynamic kernel objects. Some existing approaches use kernel memory mapping to 

identify dynamic kernel objects and check kernel integrity. The snapshot-based memory maps 

generated by these approaches are based on the kernel memory which may have been 

manipulated by kernel malware. In addition, because the snapshot only reflects the memory 

status at a single time instance, its usage is limited in temporal kernel execution analysis.  

 

In this research, a new runtime kernel memory mapping scheme called allocation-driven 

mapping is introduced, which systematically identifies dynamic kernel objects, including their 

types and lifetimes. The scheme works by capturing kernel object allocation and de-allocation 

events. The system provides a number of unique benefits to kernel malware profiling: (1) an un-

tampered view wherein the mapping of kernel data is unaffected by the manipulation of kernel 

memory and (2) a temporal view of kernel objects to be used in temporal analysis of kernel 

execution. The effectiveness of allocation-driven mapping is demonstrated in two usage 

scenarios. First, a hidden kernel object detector can be built that uses an un-tampered view to 

detect the data hiding attacks of 10 kernel rootkits that directly manipulate kernel objects 



(DKOM). Second, a temporal rootkit behavior monitor is developed that tracks and visualizes 

rootkit behavior triggered by the manipulation of dynamic kernel objects. Allocation-driven 

mapping enables a reliable analysis of such behavior by guiding the inspection only to the events 

relevant to the attack. 

 

 
Figure 2: Illustration of adore-ng rootkit KOH behavior (left: before hijacking; right: after 

hijacking) 

 

The adore-ng attack hijacks kernel code execution by modifying a function pointer and this 

attack is referred to as Kernel Object Hooking (KOH). This behavior is observed when the 

influence of a manipulated function pointer is inspected. The system generates two kernel control 

flow graphs at these samples, each for a period of 4000 instructions. Figure 2 presents how this 

manipulated function pointer affects runtime kernel behavior. The Y axis presents kernel code; 

thus, the fluctuating graphs show various code executed at the corresponding time of X axis. A 

hook-invoking function (proc_file_read) reads the function pointer and calls the hook code 

pointed to by it. Before the rootkit attack, the control flow jumps to a legitimate kernel function 

tcp_get_info which calls sprint after that as shown in Figure 2 (left). However, after the hook is 

hijacked, the control flow is redirected to the rootkit code which calls kmalloc to allocate its own 

memory, then comes back to the original function (Figure 2 – right). 

 

 

3.3 Kernel Data Access Behavior Profiling  
Based on the kernel memory mapping method presented in Section 3.2, more advanced kernel 

rootkit behavior models can be defined, which can lead to generic, high-accuracy behavior 

rootkit signatures. Characterizing malware behavior using its control flow faces several 

challenges, such as obfuscations in static analysis and the behavior variations in dynamic 

analysis. This research introduces a new approach to characterizing kernel malware’s behavior 

by using kernel data access patterns unique to the malware. The approach neither uses malware’s 

control flow consisting of temporal ordering of malware code execution, nor the code-specific 

information about the malware. Thus, the malware signature based on such data access patterns 

is resilient in matching malware variants.  

 

To evaluate the effectiveness of this approach, the signatures of three classic rootkits are first 

generated using their data access patterns, and then matched them with a group of kernel 



execution instances which are benign or compromised by 16 kernel rootkits. The malware 

signatures did not trigger any false positives in benign kernel runs; however, kernel runs 

compromised by 16 rootkits were detected due to the data access patterns shared with the 

compared signature(s). It is further observed that similar data access patterns in the signatures of 

the tested rootkits and exposed popular rootkit attack operations by ranking common data 

behavior across rootkits. Experiments show that this new approach is effective not only to detect 

the malware whose signature is available, but also to determine its variants which share kernel 

data access patterns. 

 
Figure 3: Similarity of data access behavior across rootkits 

 

The similarities of data behavior across rootkits are visualized in Figure 3. A node represents a 

rootkit signature and an arrow shows the similarity between two signatures using three different 

arrow types. An arrow from a node M1 to a node M2 means that the signature M1 can be used to 

determine the rootkit of the signature M2. This figure illustrates that several groups of rootkits 

have strong similarities. The family of adore rootkits (i.e., adore 0.38, adore 0.53, and adore-ng 

1.56) are strongly related in general. The adore-ng 1.56 is connected to other versions with less 

strong connections, thick dashed arrows, because in newer adore versions (bigger than 1.0 whose 

name is changed to adore-ng), the internal attack vector is substantially changed to use dynamic 

objects instead of static objects. A group of rootkits using the /dev/kmem memory device (i.e., 

SucKIT, hide_lkm, fuuld, and superkit) have a strong relationship to one another. The SucKIT 

and the superkit are especially connected by using thick solid arrows because they share a 

majority of data behavior. Some rootkits have relationships with different kinds of rootkits. For 

example, the kis rootkit is connected to driver-based rootkits such as the adore rootkits and the 

knark rootkit; but, it is also closely related to /dev/kmem based rootkits such as the SucKIT. 

 

As seen in Figure 3, data access behaviors are not only common in the family of rootkits or 

similar kinds, but also are present across different kinds of rootkits. The signatures of these 

related rootkits can be interchangeably used to detect one another. 

 

 

3.4 Virtualization-based Attack Replay 

The kernel malware profiling techniques can be further enhanced to support live kernel rootkit 

monitoring and forensics, especially in the virtual honeypot record and replay (R&R) scenarios. 

To “rewind” a honeypot’s execution, an intuitive network-level approach would be to replay the 

captured network traffic targeting the honeypot system (since the honeypot is remotely 



compromised). However, due to inherent sources of non-determinism in modern systems and 

software, by simply replaying the captured network packets, it may not be possible to obtain the 

same execution of the honeypot system. From another perspective, a number of system-level 

deterministic R&R approaches have been proposed for a variety of purposes, including fault 

tolerance, application debugging and security analysis. Recording and replaying a VM is well-

suited for honeypots since it can capture and reproduce the entire system’s execution. However, 

most prior VM R&R systems are not suitable for high-interaction honeypots because either they 

do not support commodity OSes or require extensive OS-level customization, or they heavily 

rely on proprietary virtual machine monitors (VMMs). Moreover, there is a lack of honeypot-

specific forensic analysis modules that can take advantage of VM R&R capability. 

 

 
Figure 4: Log excerpt for live forensic analysis of SuKIT rootkit using Timescope 

 

In this research, a VM R&R system called Timescope is developed. Timescope is a time-

traveling high-interaction honeypot system designed for extensible, fine-grained forensic 

analysis. Leveraging previous insights from VM-level R&R systems, an open-source tool is 

developed, aiming to engage the security community and benefit related research efforts that 

may require similar features. In addition, the system is extended by developing a number of 

honeypot-specific analysis modules: contamination graph generator (I), transient evidence 

recoverer (II), shellcode extractor (II), and break-in reconstructor (IV). These modules are 

applied only during honeypot execution replay sessions and placed externally so that the replay 

itself is not perturbed. By allowing the analysis modules to “travel back in time”, it addresses key 

questions in honeypot forensic investigations, such as: “what are the contaminations or damages 



caused by an intrusion?”; “what intermediate evidence (e.g., files and directories), if any, has 

been erased by the attacker?”; “how is the attack launched?” 

 

Timescope and these analysis modules have been implemented based on the open-source QEMU 

VMM and enabled multi-faceted, inter-related malware forensic analysis during multiple replay 

sessions. Evaluation with a number of attack scenarios, including real-world worm programs and 

kernel rootkits, shows the practicality and effectiveness of Timescope to repeatedly and 

comprehensively analyze past intrusions. The experiments are enabled by repeatedly rewinding 

the honeypot’s execution, not based on the log from one single run. 

 

In one of the experiments, the goal is to demonstrate how Timescope’s replay-based forensic 

analysis techniques can be used to analyze intermediate memory states in the honeypot. For this, 

the SucKIT kernel rootkit is launched to attack a honeypot VM. To analyze this attack, a replay 

session is run with the first analysis module and the root login and subsequent commands 

executed (with the sys_execve() system call) are observed. A subset of the log is shown in Figure 

4. In particular, the command “install” is run by the attacker and it opens the file /dev/kmem 

which, gives complete write access to the root user to write to arbitrary locations in the kernel 

memory. To highlight a subset of the execution profiling analysis, consider the lines indicating 

that the kernel memory is being overwritten as shown in Figure 4. These lines indicate kernel 

memory being overwritten from the ranges 0xc7024400 to 0xc70261cb. One interesting 

observation from Figure 4 is that the “install” user process is issuing a sys_oldolduname() system 

call, when in reality, the rootkit overwrote the address of this system call handler in the kernel 

multiple times to use it for allocating kernel memory, injecting rootkit code in the kernel space, 

and hijacking kernel control flow.  

 

 

3.5 Process Implanting for Agile Assured Execution  

This research has also led to two interesting (and novel) capabilities for agile and assured process 

execution in VMs: process implanting and process out-grafting. This section describes process 

implanting and the next section will present process out-grafting.  

 

To motivate process implanting, it has been known that many security tools for malware 

detection are vulnerable to attacks because they are exposed to malwares. The most common 

technique used by a malware to hide itself is to dysfunction anti-malware engines. In order to be 

tamper-resistant and stealthy, current approaches leveraging virtualization technology to detect 

and prevent malware attacks usually try to move the monitoring tools from the untrusted guest 

VM to underlying hypervisor or to another isolated trusted VM to prevent the tools from being 

tampered with. By reconstructing the semantic view of guest VM from host through the 

technique of virtual machine introspection, a large (yet incomplete) amount of semantic 

information can be obtained. The semantic gap between the guest OS and host is a known barrier 

to services operating below the abstractions of guest OS and applications. This problem becomes 

more challenging with the widely deployment of hardware virtualization, whose goal is to run 

most of the native instructions directly on the CPU and expose as few details as possible to the 

VMM to gain higher performance. Previous approaches to virtual machine introspection can 

passively detect or actively monitor attacks with effectiveness. Yet it is desirable to act even 



more actively in the counterattacks by obstructing, analyzing and subverting the malware attacks. 

This requires a more complete, native semantic view of the guest VM. 

 

 
Figure 5: Overview of process implanting 

 

This research has resulted in process implanting, a general-purpose active VM introspection 

framework. The idea is to implant a process directly from the host into the guest under the cover 

of an existing process inside the guest OS to narrow the semantic gap and gain in-context 

knowledge of the running VM. Instead of leaving the implanted process alone inside the guest 

VM, a series of coordination and protection mechanisms are designed. They are supported by the 

higher privileged hypervisor to exempt the implanted process from malware’s tampering and 

leave minimum negative impact on the normal execution of guest OS and applications after it 

exits. 



 
 

Figure 6: Log excerpt from process implanting-enabled library call introspection 

 

In one of the experiments, the ltrace tool is implanted to trace the ls utility which had been 

infected by caline. Caline is an ELF infector using S.P.I (segment padding infection) technique. 

It inserts virus code after the code segment of an ELF binary to change its behavior. Through 

tracing the infected ls, it becomes easy to identify the deviated execution path by checking the 

arguments of library calls. The box in Figure 6 presents the suspicious execution results. 

 

 

3.6 Process Out-grafting for Agile Assured Execution 

As a counter-part of process implanting (Section 3.5), process out-grafting is an architectural 

approach that addresses both isolation and compatibility challenges for out-of-VM, fine-grained 

user-mode process execution monitoring. Similar to prior out-of-VM approaches, out-grafting 

still confines vulnerable systems as VMs and deploys security tools outside the VMs. However, 

instead of analyzing the entire VM on all running processes, out-grafting focuses on each 

individual process for fine-grained execution monitoring. More importantly, this approach is 

designed to naturally support existing user-mode process monitoring tools (e.g., strace, ltrace, 

and gdb) outside of monitored VMs on an internal suspect process, without the need of 

modifying these tools or making them introspection-aware (as required in prior out-of-VM 

approaches). For simplicity, the terms “production VM” and “security VM” are used respectively 

to represent the vulnerable VM that contains a suspect process and the analysis VM that hosts the 

security tool to monitor the suspect process. 

 

To enable process out-grafting, two key techniques are developed (shown in Figure 7). 

Specifically, the first technique, on-demand grafting, relocates the suspect process on demand 

from the production VM to security VM (that contains the process monitoring tool as well as its 

supporting environment). By doing so, grafting effectively brings the suspect process to the 



monitor for fine-grained monitoring, which leads to at least two important benefits: (1) By co-

locating the suspect process to run side-by-side with the monitor, the semantic gap caused by the 

VM isolation is effectively removed. In fact, from the monitor’s perspective, it runs together 

with the suspect process inside the same system and based on its design can naturally monitor the 

suspect process without any modification. (2) In addition, the monitor can directly intercept or 

analyze the process execution even at the granularity of user-level function calls, without 

requiring hypervisor intervention, which has significant performance gains from existing 

introspection-based approaches. 

 

 
Figure 7: Overview of process out-grafting 

 

To effectively confine the (relocated) suspect process, the second technique enforces a mode-

sensitive split execution of the process, thus the name split execution. Specifically, only the user-

mode instructions of the suspect process, the main focus for fine-grained monitoring, will be 

allowed to execute in the security VM; all kernel-mode execution that requires the use of OS 

kernel system services is forwarded back to the production VM. By doing so, the system can not 

only maintain a smooth continued execution of the suspect process after relocation, but ensure its 

isolation from the monitoring tools. Particularly, from the suspect process’ perspective, it is still 

logically running inside the production VM. In the meantime, as the suspect process physically 

runs inside the security VM, the monitoring overhead will not be inflicted to the production VM, 

thus effectively localizing monitoring impact within the security VM. 

 

A proof-of-concept prototype has been implemented on KVM/ Linux (version kvm-2.6.36.1) and 

tested to out-graft various processes from different VMs running either Fedora 10 or Ubuntu 

9.04. It has been evaluated with a number of different scenarios, including the use of traditional 

process monitoring tools, i.e., strace/ltrace/gdb, to monitor an out-grafted process from another 

VM. Note that these fine-grained process monitoring tools cannot be natively supported if the 

semantic gap is not effectively removed. Moreover, it is also shown that advanced (hardware-

assisted) monitoring tools can be deployed in the security VM to monitor a process in the 

production VM, while they may be inconvenient or even impossible to run inside the production 

VM. The performance evaluation with a number of standard benchmark programs shows that the 

process out-grafting prototype incurs a small performance overhead and the monitoring overhead 

is largely confined within the security VM, not the production VM. 



In one of the experiments, process out-grafting is applied to fight malware obfuscation. Most 

recent malware apply obfuscation techniques to evade existing malware detection tools. Code 

packing is one of the popular obfuscation techniques. To detect packed code, efficient behavioral 

monitoring techniques such as OmniUnpack have been developed to perform real-time 

monitoring of a process’ behavior by tracking the pages it writes to and then executes from. 

When the process invokes a “dangerous” system call, OmniUnpack looks up its page list to 

determine whether any previously written page has been executed from. If so, this indicates 

packing behavior, at which point a signature-based anti-virus tool can be invoked to check the 

process’ memory for known malware. 

 

In the experiment, a freely available UPX packer is used to pack the Kaiten bot binary. A 

security-sensitive event trigger is also utilized to initiate process out-grafting when a suspect 

process invokes the sys_execve system call. The trigger is placed such that just before the system 

call returns to user-mode (to execute the first instruction of the new code), KVM is invoked to 

out-graft the process’ execution to the security VM. Inside the security VM, the OmniUnpack 

tool is running to keep track of page accesses by the process. Since the system calls invoked by 

the process are also available for monitoring, OmniUnpack successfully detects the packing 

behavior. 

 

 

3.7 Reducing Kernel Attack Surface via Face-Change 

This research also explores the paradigm of treating the guest OS as a “moving target” for better 

protection against kernel-level (as well as user-level) attacks. Modern operating systems strive to 

shrink the size of the trusted computing base (TCB) to ease code verification and minimize trust 

assumptions. For a general-purpose OS like Linux, kernel minimization has already been 

established as a practical approach to reducing attack surface. But for a general-purpose OS 

supporting a variety of applications, whole-system profiling unnecessarily enlarges the kernel 

attack surface of the system. 

 

 
Figure 8: Overview of Face-Change where processes each have their own kernel code views 

 

A key observation from this research is that kernel code executed under different application 

contexts varies drastically. Profiling experiments show that two distinct applications may share 

as little as 33.6% of their executed kernel code – thus system-wide kernel minimization would 

over-approximate both applications’ kernel requirements. For example, the kernel functionality 



needed by task manager top is to read statistics data from the memory-based proc file system and 

write to the tty device. In sharp contrast, the Apache web server primarily requires network I/O 

services from the kernel. If a system running top and Apache simultaneously is profiled, the 

kernel’s networking code will be exposed to top simply because Apache is in the same VM. 

Further, assume top is the target of a malicious attack, the compromised top may be implanted 

with a parasite network server as a backdoor without violating the minimized kernel’s constraint. 

 

To address the problems with whole-system-based kernel minimization, FACE-CHANGE is 

developed, which is a virtualization-based system to support dynamic switching among multiple 

minimized kernels, each for an individual application. The term kernel view refers to the in-

memory kernel code presented to an individual application. In conventional kernels, all 

concurrently running user-level processes share the same kernel view containing the entire kernel 

code section, which is referred to as a full kernel view. FACE-CHANGE aims to present each 

process with a different, customized kernel view, which is prepared individually in advance by 

profiling the application’s needs. Any unnecessary kernel code is eliminated to minimize the 

attack surface accessible to this specific application. At runtime, FACE-CHANGE identifies the 

current process context and dynamically switches to its customized kernel view. 
 

 
Figure 9: Evaluation results showing FACE-CHANGE detecting both kernel and user-level 

malware 

 

Extensive experiments have been performed to evaluate the effectiveness of FACE-CHANGE 

with 13 user-level malware (8 of them use online runtime infection and 5 use offline binary 

infection) and 3 kernel-level rootkits. The results are presented in Figure 9. 

 

 

3.8 Compiler Support for Kernel Rootkit Defense via Randomization 

Finally, to complement the virtualization-based kernel protection techniques, a compiler-based 

solution has been proposed that does not require virtualization support. Although this research 

focuses on the virtualization-based approaches, a non-virtualized solution is helpful for 

comparison and complement.  

 

The vast majority of hosts on the Internet, including mobile clients, are running on one of three 

major operating system families. Malicious operating system kernel software, such as the code 

introduced by a kernel rootkit, is strongly dependent on the organization of the victim operating 

system. Due to the lack of diversity of operating systems, attackers can craft a single kernel 

exploit that has the potential to infect millions of hosts. If the underlying structure of vulnerable 



operating system components has been changed, in an unpredictable manner, then attackers must 

create many unique variations of their exploit to attack vulnerable systems en masse. If enough 

variants of the vulnerable software exist, then mass exploitation is much more difficult to 

achieve. Many forms of automatic software diversification have been explored and found to be 

useful for preventing malware infection. Forrest et. al. make a strong case for software diversity 

and describe a few possible techniques including: adding or removing nonfunctional code, 

reordering code, and reordering memory layouts. The techniques in this research build on the 

latter. 

 

Two different ways are proposed to mutate an operating system kernel using memory layout 

randomization to resist kernel-based attacks. A new method is introduced for randomizing the 

stack layout of function arguments. Additionally, a previous technique for record layout 

randomization is refined by introducing a static analysis technique for determining the 

randomizability of a record. Prototypes of these techniques are developed using the plugin 

architecture offered by GCC. To test the security benefits of the techniques, multiple Linux 

kernels have been randomized using the new compiler plugins. The randomized kernels are then 

attacked using multiple kernel rootkits. Experiments show that by strategically selecting just a 

few components for randomization, the techniques prevent all kernel rootkits in the experiments. 
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